The role of molybdenum in the new energy industry

Molybdenum's role in the New Energy Industry

I. Introduction

As a result of the recent changes in the global energy market, the energy sector is growing rapidly. The future energy market will include solar energy, biomass, wind, water, geothermal and other forms of renewable energy. The energy sector of tomorrow will be a major player in molybdenum because it is rare. This article will examine the characteristics, principles, and applications of molybdenum so that you can understand the importance of this element in the current energy industry.

2. Property of molybdenum

Molybdenum has high melting, boiling and strength properties, as well as corrosion resistance. It is insoluble in acids, alkalis, and water. The molybdenum dioxide has excellent electrical conductivity, thermal stability and is therefore a very important material in the new Energy Industry.


3. Molybdenum's role in the New Energy Industry

solar industry

The solar industry is the one that converts and uses solar energy. Molybdenum compounds and their derivatives play a major role in the Solar Industry.


(1) Photovoltaic Material: The molybdenum material is a good photovoltaic because it has high conversion efficiency. Molybdenum can be added to solar cells in small amounts to improve their photoelectric conversion and lifetime.


Molybdenum can be used in high-temperature equipment like solar collectors, solar boilers and other high-temperature devices to increase the thermal efficiency.

Wind Energy Industry


Wind energy is an industry that uses the wind to convert and use energy. Molybdenum compounds and molybdenum play important roles in wind energy.


(1) Wind turbines. Molybdenum, and its alloys, have excellent strength and corrosion resistance properties. They can be used in the manufacture of key components of wind turbines such as the blades and the main shafts to increase the safety and service life.


(2) Lubricants. Molybdenum compounds and their compounds are excellent lubricants and can reduce the friction loss of wind turbines and equipment failure rates.


Hydropower industry

The hydropower industry is an industry that uses water energy as a source of energy. Molybdenum compounds and molybdenum play important roles in hydropower.

Molybdenum can be used for key components like blades and main shafts in hydrogenerator units. This will improve the life expectancy and safety of equipment.


Fluid accessories: Molybdenum compounds and their compounds are excellent in terms of fluidity and corrosion resistance. They can be used for the manufacture of fluid accessories to improve the fluid efficiency and durability.


Geothermal Energy Industry

Geothermal energy is an industry that uses the geothermal heat to convert and utilize energy. Molybdenum compounds and molybdenum play important roles in geothermal energy.

(1) Geothermal equipment: Molybdenum can be used in the manufacture of key components, such as heat-exchangers and boilers for geothermal equipment to improve thermal stability and efficiency.


Molybdenum can be used for the production of components like heat exchangers, pipes and other geothermal equipment. This will improve the thermal efficiency and durability.

Biomass Energy Industry

The biomass energy industry uses biomass energy to convert and utilize energy. Molybdenum compounds and molybdenum play important roles in the bioenergy industry.


Molybdenum can be used for the production of boilers and burners in biomass combustion equipment. This will improve their thermal stability and efficiency.


Molybdenum is a good catalyst and can be used in the production of biofuels to increase yield and quality.


4. Molybdenum applications in the new energy sector

Solar power generation. Molybdenum has a major role to play in the solar cell and is an important material for solar energy generation systems.

Molybdenum has a significant role to play in wind power generation.

Molybdenum has a vital role to play in the hydroelectric generation of power. It is a critical material for hydroelectric generation systems.

Molybdenum has a major role to play in the production of geothermal electricity. It is also a critical material for these systems.

Molybdenum has a vital role to play in the production of biofuels and in the combustion equipment used for biomass.


5. Molybdenum in the new energy sector

Molybdenum demand will increase with the rapid development in the new energy industry. Gleichzeitig, due to the rapid development of technology and cost reduction, the use of molybdenum within the new energy industry is set to increase. Molybdenum's application in the new energy sector will expand further, contributing to the growth of green power.

Application Fields of Nickel Based Alloys

Nickel Based Alloys - Application Fields

Nickel-based alloy Based on nickel, it is made up of various alloying materials. It is used for its high-temperature properties, corrosion resistance and oxidation resistant as well as mechanical properties in the aviation, aerospace and petrochemical industries. This article will give a detailed description of the Applications of nickel-based alloys in different fields such as aerospace, petrochemicals and power energy. It also provides references for Research and Application.

Applications of nickel-based alloys to the aerospace industry

The aerospace sector is one important area for application. Nickel-based alloys These are the main components used in aerospace to produce high-performance products like aircraft, rockets and satellites.

Aircraft engine components

Aircraft engines include:

* The aviation industry's core equipment.

* Material with outstanding high-temperature resistance is required.

* Corrosion resistant.

* Mechanical properties

Nickel-based metals exhibit excellent strength at high temperatures, as well as creep and fatigue resistance. The alloys are widely used for aircraft engine parts, including turbine blades and guides.

Rocket engine components

Rocket engines are key equipment in the launch of satellites and space probes. They require materials with extreme high-temperature strengths and corrosion resistance. Nickel-based alloys In the manufacture of rocket engines are commonly used key components like combustion chambers. nozzles and turbine disks.

Satellite structural components

Satellites' structural components need materials with high temperature resistance, corrosion resistance and dimensional stabilities. Many structural components, including solar panels and structural frame frames, are manufactured using nickel-based materials.

Use of nickel-based alloys for the petrochemical Industry

Nickel-based materials are also widely used in the petrochemical and chemical industries. Nickel-based alloys are primarily used in the manufacture of key equipment, such as high temperature and high pressure reactors and pipes, for the petrochemical industries.

High-temperature reactor

High-temperature Reactors are:

The petrochemical industry's core equipment.

* Material with outstanding high-temperature resistance is required.

* Corrosion resistant.

Mechanical properties

Alloys based on nickel have excellent mechanical, corrosion and high-temperature properties. High-temperature reactors like hydrogenation reactors or reforming reactors are made with these alloys.

High-pressure pipeline

In the petrochemical industries, high-pressure pipes are essential equipment. Materials with excellent corrosion resistance and mechanical properties are required. Nickel-based materials are widely used for high-pressure pipe manufacturing because of their excellent high-pressure resistance, corrosion resistance, as well as mechanical properties.

Applications of nickel-based materials in the field power energy

The electric energy sector is another area where nickel-based materials are used. These alloys are mainly employed in the manufacture of high-temperature exchangers and in gas turbines.

High-temperature heat exchanger

The high-temperature heat-exchangers in the power and energy industry are essential equipment. Materials with excellent resistance to corrosion, as well as mechanical properties, are required. Nickel-based materials have excellent mechanical, corrosion-resistant, and high-temperature properties. The alloys are widely used for high-temperature exchangers like air preheaters or flue gas exchangers found in coal-fired electricity stations.

Gas turbine blades

Gas turbines can be:

Important equipment used for energy conversion and electricity generation

* Material with outstanding high-temperature resistance is required.

* Corrosion resistant.

Mechanical properties

In the manufacture of gas turbines such as blades and key components, nickel-based materials are used widely.

Applications of nickel-based alloys to biomedicine

Biomedical applications are another important area for nickel-based metals. These alloys are used to manufacture medical devices like artificial joints and vascular scaffolds.

Artificial joint

Artificial joints can be:

* Medical devices that replace diseased joints.

* Requiring materials that are highly corrosion resistant

* Biocompatibility.

* Mechanical properties

Alloys based on nickel have excellent corrosion resistance and biocompatibility. They are also used to manufacture artificial joints.

Vascular stent

Materials with high corrosion resistance, biocompatibility and flexibility are required for vascular stents. Nickel-based materials are highly corrosion resistant, biocompatible, and flexible and are widely used for vascular devices.

As a summary, nickel-based materials have been extensively used in aerospace and petrochemicals as well as power energy and biomedicine. In the future, with the development of technology, it is expected that nickel-based materials will be more widely used, and they will contribute to the technological advancement and industrial progress in many fields.

About KMPASS

KMPASS is a global supplier and manufacturer of high-quality nanomaterials, chemicals, and other materials. We have over 12 year experience. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. KMPASS, a leading manufacturer of nanotechnology products, dominates the market. Our expert team offers solutions to enhance the efficiency of different industries, create value and overcome various challenges. You can contact us at sales2@nanotrun.com if you need Inconel powder.

What is Zinc Sulfide

Zinc Sulfide:

Its chemical formula is ZnS. The molecular weight of the compound is 134.72. It is created by interacting through ionic interactions with zinc ions, (Zn2+), and sulfur ions, (S2-). In the crystal, the sulfur ions form a regular tetrahedron around the zinc ion. The sulfur ion occupies the center of the tetrahedron. This structure can also be described as a face centered cubic crystal system where zinc and sulfur are located in the vertex of the lattice and at the center of the face.

Zinc Sulfide (also known as Zinc Sulfide) is an insoluble, white solid. It is not soluble in water. However, it is soluble with bases and acids. Zinc sulfide's density is 3,98 grams per cubic centimeter, with a maximum boiling temperature at 1650 degrees C. It is also very transparent and has good optical properties. The chemical properties are relatively stable but they can also change under certain circumstances. Zinc sulfide is oxidized, for instance, when it comes into contact with an oxidizing substance. In an environment that is alkaline, zinc sulfide will react with hydroxide molecules to produce zinc hydroxide.

Application of Zinc Sulfide

Zinc sulfide, also known as zinc sulfur, is a significant compound. The unique structure of its crystal and its chemical and physi-cal properties have made it a widely used material in many fields. We will discuss the various applications of zinc sulfide.

1. Manufacturers of phosphor

Zinc Sulfide has a variety of uses, including in fluorescent screens. Zinc sulfide, used in the manufacture of fluorescent screens, can be made into phosphors which, upon being excited by external lights, emit different colors. In the manufacture of fluorescent lamps, zinc-sulfide also makes phosphors which emit visible light upon being excited by ultraviolet radiation.


2. Manufacturing of photoelectric conversion materials

Zinc Sulfide, a material used for photoelectric conversion, can also be used in the manufacture of solar cells. Zinc sulfide converts light energy into electrical power in solar cells. The photoelectric efficiency of zinc sulfide, combined with its low cost, makes it a material that has wide applications.


3. Drug Manufacturing

Zinc Sulfide, because of its biological activity, has many applications in pharmaceutical production. Zinc sulfide is used in the manufacture of anti-malarials, including zincsulfate as well as zinc acetate. The zinc sulfide used can be used for the production of preservatives, fungicides as well as other products.


4. Catalyst Manufacturing

Zinc sulfide can act as a catalyst for the creation of other compounds like zinc acetates, acetones, and methylisobutylketone. Zinc sulfur is an excellent catalyst for manufacturing due to its high activity.


5. Optical device manufacturing

Due to its high transparency, zinc sulfur is used widely in optical devices. Zinc sulfide is used, for instance, in optical fiber communication to produce optical fiber preforms. Additionally, zinc sulfide may be used to make optical devices like optical Windows and lenses.

Production method of Zinc Sulfide.

1. Method of chemical precipitation

The chemical precipitation method is the most common way to prepare zinc sulfide. The zinc sulfide was obtained by mixing zinc salt with sulfur salts in a liquid solution.

Preparation Solution: Dissolve a suitable amount of zinc salt and sulfur salt into water to create a solution.

Precipitation reaction : the above solution is heated in stirring conditions and an appropriate amount precipitating agent is then added to precipitate both zinc ions (and sulfur ions) to generate zinc-sulfide precipitation.

Filtration : The reaction is filtered in order to obtain a filtrate that contains zinc-sulfide precipitation.

Cleaning: The filtered precipitation of zinc sulfide is cleaned with alcohol in order to remove impurities.

Drying: After washing the zinc sulfide it is precipitated then dried to get zinc sulfide.

The benefits of chemical precipitation include low cost and high purity. The disadvantages of this method are that it requires many detergents and precipitating agents. Also, the waste liquid generated must be treated before being discharged, which can cause environmental pollution.


2. Synthesis of solid phases at high temperatures

Traditional methods for the preparation of zinc sulfide include high-temperature solid-phase synthesis. A solid reaction between zinc oxides and sulfur-containing elements was used to produce zinc sulfide.

Ingredients: To make raw materials, the appropriate amount of carbon powder, zinc oxide powder, and sulfur dioxide powder is mixed.

Pretreatment: Raw materials undergo a pretreatment at high temperature to ensure that all components react and generate zinc vapor.

Synthesis: Zinc and sulfur vapors are produced at high temperatures.

Collection: The zinc sulfide synthetic powder is collected.

The high-temperature, solid-phase synthesis is characterized by high purity, excellent crystallinity, as well as a relatively straightforward process. The method does require high-temperatures and a lot of carbon and sulfur powder.


3. Soluthermal method

The solvothermal process is a method that has been developed to prepare zinc sulfide. The method is to dissolve zinc salts and sulfur salts in an organic solution under high pressure and temperature. This produces zinc sulfide by hydrothermal reactions.

Solution preparation: Dissolve the required amount of zinc salt and sulfur in the organic solvent.

High-temperature reaction under high pressure: The above solution will be placed in a reactor with high temperatures and high pressures, where the hydrothermal reactions are carried out. This produces zinc sulfide.


The generated zinc powder is collected, and treated as required.

The solvothermal technique has the advantage of a high purity product, good crystallinity and a relatively straightforward process. The method is also capable of using different organic solvants and reaction conditions in order to control product properties. The method is not without its limitations. It requires high-temperature, pressure equipment. And the recovery and disposal process of organic solvents are expensive and require certain technology.

It is important to consider the advantages and limitations of different methods of production of zinc sulfide, and to select the appropriate methods according to actual conditions and needs. During the production, it is important to take into account environmental protection and safety. Adopting appropriate environmental protection technologies and measures will help reduce the harm caused to the environment and humans.

Prospect Markets of Zinc Sulfide ()

1. phosphor market prospects

Zinc sulfur is widely used to manufacture phosphor. Phosphor can absorb light while emitting different colors. It is used widely in the display, lighting, photovoltaic, and other fields. The use of phosphors is expanding as science and technology continue to develop. This includes solar cells, optical storage, and biomedicine. Zinc sulfide has become an important material for phosphors, and the market is growing.


2. Photoelectric conversion materials: market outlook

Zinc sulfur is also widely used for the production of photoelectric materials. Photoelectric materials convert light energy to electricity. Solar cells is the most common use. The demand for solar panels is increasing as renewable energy becomes more important. The cost of photoelectric converter materials has also been steadily decreasing, as technology continues to improve.


3. Market prospects for drug manufacturing

Zinc Sulfide has also been used in pharmaceutical production. The pharmaceutical industry is a massive market. As people become more health-conscious, the demand for drugs increases. Zinc Sulfide can be used for antimalarial drug production and has a biological activity.


4. Prospects for the manufacturing of catalysts

Zinc sulfur is used for some catalyst production. Catalysts are substances that accelerate chemical reaction and have a variety of applications, including in the fields of environmental protection, pharmaceuticals, and chemical industries. As technology continues to develop, so do the demands for catalytic performance and selectivity. This provides more opportunities for using zinc sulfide as a catalyst.


5. The optical device market is expected to grow at a rapid rate.

Zinc sulfur is also widely employed in the manufacture of optical devices. The optical device has multiple applications, including communication, imaging and optical storage. It can modulate and transmit the light. As technology continues to develop, performance requirements for optical products are increasing. This provides more opportunities to apply zinc sulfide when manufacturing optical devices.

Zinc Sulfide Price :

Many factors influence the price of a product, such as the economic activity in the industry, the demand and supply on the market and the sentiments and expectations of the market.

You can contact us for a quotation if you want to know the current price of zinc sulfide.

Zinc Sulfide Powder Supplier :

Technology Co. Ltd., () is an experienced global chemical material manufacturer and supplier with over 12 years' experience. They provide super-high quality chemicals including graphite powders.

Contact us and submit an inquiry if you want to buy high-quality zinc sulfur powder.

CLC blocks and foamed concrete lead the reform of the construction industry

CLC Blocks and foamed Concrete, two new energy-saving materials that are environmentally friendly, lead the construction industry reform.

As environmental awareness continues to improve, the construction industry is now focusing on more energy-efficient and environmentally friendly building materials.

The construction industry has been gradually adopting CLC block as an environmentally friendly, energy efficient, and durable wall material.

CLC block It is an energy-saving material for walls made from fly ash, cement, slags and river sand.

Its characteristics include high strength, lightweight, heat insulation, noise insulation, thermal insulation. It also has a convenient and efficient design, a long life span, and can reduce energy consumption and maintenance costs of buildings.

Compare with the traditional clay brick CLC block It has many benefits.

CLC blocks reduce pollution and production costs by using a variety of raw materials. These include cement, slag, and other industrial wastes as well as natural materials like river sand.

The CLC block is also light and strong, which reduces the weight of a structure and enhances its seismic performance.

CLC blocks have excellent thermal insulation as well as sound insulation and thermal resistance, which can help to improve the performance and comfort of buildings.

Construction of CLC block can be convenient and quick, allowing for a shorter construction period.

A new wall material, foam concrete, has also attracted a lot of attention.

The building material is lightweight, strong, and thermally and acoustically insulating. It's made up of raw materials, such as foaming agent, cement and foam agent.

In comparison with traditional concrete, the foam concrete not only has a better thermal insulation and sound insulation, but can also reduce self-weight.

Foamed concrete is made from cement and foaming agent. The foam structure of the foamed material is formed through mixing and foaming.

This foam structure is able to make concrete lighter and soundproof. It can also insulate heat.

The foam concrete can also meet the needs of building structures in terms load bearing, durability and flexibility.

New wall materials have a wide range of applications in the construction industry. CLC block The foam concrete range is quite broad.

You can use them for the exterior and interior walls as well as thermal and sound insulation.

These materials also have characteristics that are compatible with the current trend in the construction industry, such as a simple production process, low costs, and good environmental performance.

The construction industry is gradually becoming more interested in and favoring the new wall materials CLC Block and foam concrete due to their outstanding performance and extensive application potential.

It is expected that, in the future, due to the development of science and technologies, these materials will become more important and play a greater role in the building industry. They are also believed to promote the green construction of the industry.

Silicon Boride SiB6 Powder Applications

Now China has become a powerful country in science and technology, but do you know how powerful China's technology is? The manned space station alone is not enough, and now it has successfully broken through the key technology of nuclear fusion, even leading the world by 15 years. Does this mean that China is not far from the artificial sun? It turned out that the fully superconducting tokamak nuclear fusion experimental device developed by China at the Hefei Research Institute of the Chinese Academy of Sciences successfully achieved a record of 101 seconds of continuous operation at 120 million degrees Celsius, and broke the world record. Compared with the previous record in South Korea, China has time has been directly extended by 5 times, and it seems that we are one step closer to the practical stage of artificial sun.
The success of nuclear fusion technology will lead to the development of Silicon Boride SiB6 Powder,Silicon Boride SiB6 Powder Overview,Silicon Boride SiB6 Powder Applications,Silicon Boride SiB6 Powder Price,Silicon Boride SiB6 Powder Supplier.

Silicon Boride SiB6 Powder Overview

Silicon boride (also known as borosilicide) is a lightweight ceramic compound composed of silicon and boron. There are silicon triboride, silicon tetraboride, silicon hexaboride and so on.

Silicon hexaboride or hexaborosilicide is a glossy black-grey powder. The chemical formula is SiB6. The molecular weight is 92.95. The relative density is 2.47 g/cm3 and the melting point is 2200℃. The hardness is between diamond and ruby. Silicon hexaboride can conduct electricity. It is insoluble in water. Surfaces are oxidized when heated in chlorine and water vapor.

The SiB6 crystal structure consists of interconnected icosahedrons (polyhedra with 20 faces), icosahedrons (polyhedra with 26 faces), and isolated silicon and boron atoms.

It is insoluble in water and resists oxidation, thermal shock and chemical attack. Especially under thermal shock, it has high strength and stability. The grinding efficiency is higher than that of boron carbide.

Surface oxidation occurs when SiB6 is heated in air or oxygen and attacked at high temperatures by boiling sulfuric acid and fluorine, chlorine and bromine. Borides are conductive. Hexaborides have low thermal expansion coefficients and high thermal neutron cross sections.

Silicon Boride SiB6 Powder Applications

Silicon boride SiB6 powder can be used as a variety of standard abrasives for grinding carbide. It is also used as engineering ceramic materials, sandblasting nozzles, manufacturing gas engine blades and other special-shaped sintered parts and seals. Used as an antioxidant for refractory materials.

1. Silicon boride SiB6 powder is used as various standard abrasives and grinding hard alloys;

2. Silicon boride SiB6 powder is used as engineering ceramic material and used as various standard abrasives for grinding cemented carbide.

3. Silicon boride SiB6 powder can also be used as engineering ceramic materials, sandblasting nozzles, manufacturing gas engine blades and other special-shaped sintered parts and seals.

4. Silicon boride SiB6 powder can be used as an antioxidant for refractory materials.

Silicon Boride SiB6 Powder Price

The price of silicon boride SiB6 powder will change randomly due to factors such as production cost, transportation cost, international situation, and supply and demand of silicon boride SiB6 powder market. Tanki New Materials Co., Ltd. aims to help various industries and chemical wholesalers find high-quality, low-cost nanomaterials and chemicals by providing a full range of customized services. If you are looking for silicon boride SiB6 powder, please feel free to send an inquiry to get the latest silicon boride SiB6 powder price.

Silicon Boride SiB6 Powder Supplier

As a global supplier of silicon boride SiB6 powders, Tanki New Materials Ltd. has extensive experience in the performance, application and cost-effective manufacturing of advanced and engineered materials. The company has successfully developed a series of powder materials (including oxide materials, carbides, nitrides, single metals, etc.), high-purity targets, functional ceramics and structural devices, and provides OEM services.

Silicon Boride Properties
Other Namessilicon hexaboride, SiB6 powder
CAS No.12008-29-6
Compound FormulaSiB6
Molecular Weight92.9515
AppearanceDark Grey to Black Powder
Melting Point1950
Boiling PointN/A
Density2.43 g/cm3
Solubility in H2OInsoluble
Exact Mass93.036391
Silicon Boride Health & Safety Information
Signal WordWarning
Hazard StatementsH315-H319-H335
Hazard CodesXi
Risk Codes36/37/38
Safety Statements26-36
Transport InformationN/A


As the duration of the conflict between Russia and Ukraine grows, its impact on commodities is widening amid the tug-of-war. Recently, European and American sanctions against Russia have been issued one after another. In response, Russia has taken advantage of its role as an important supplier of many energy and commodities, requiring exports of commodities, including energy, grain, metal, and wood, to "unfriendly" countries to be settled in robles. Therefore, it is expected that the price of the Silicon Boride SiB6 Powder,Silicon Boride SiB6 Powder Overview,Silicon Boride SiB6 Powder Applications,Silicon Boride SiB6 Powder Price,Silicon Boride SiB6 Powder Supplier will continue to increase.  


Structure of Molybdenum Carbide Mo2C

Overview of molybdenum carbide Mo2C powder

The molecular formula of molybdenum carbide is Mo2C, the molecular weight is 203.88, and the carbon content is 5.89%. It is a dark grey metallic powder with a tightly packed hexagonal lattice. The density is 9.18g/cm and the melting point is 2690℃. As a new functional material, it has high melting point and hardness, good thermal and mechanical stability, and good corrosion resistance. It has been widely used for high temperature resistance, wear resistance and chemical corrosion resistance. Place.

Structure of Molybdenum Carbide Mo2C

Metal carbides are generally considered to have interstitial alloy structures. In common interstitial alloys, metal atoms are arranged in the form of face-centered cubic (FCC), hexagonal dense packing (HCP), and simple hexagonal (HEX), and non-metallic atoms enter the space between the metal atoms. The most common types of gaps between metal atoms are octahedrons and triangular prisms. The crystal structure of metal carbides depends on geometric and electronic factors. The geometric factor can be described by Hager's rule of thumb: when the atomic ratio of nonmetal to metal is below 0.59, simple crystal structures are formed. Interestingly, although metal carbides have simple crystal structures, few of these compounds have the same crystal structure as their parent metals. For example, molybdenum metal has a body-centered cubic structure, while its stable carbides have a hexagonal close-packed structure, and oxycarbides have a face-centered cubic structure. Another factor that determines the crystal structure of interstitial alloys is the electronic factor. The bonding in these compounds results from the cooperation between the sP orbitals of nonmetals and the SPD orbitals of metal atoms.

{xunruicms_img_title}{xunruicms_img_title}

Application of Molybdenum Carbide Mo2C Powder

Molybdenum carbide is a new functional material with high melting point, high hardness and excellent corrosion resistance. It has been widely used in various fields of high temperature, wear resistance and chemical corrosion. It has similar noble metal electronic structure and catalytic properties.

1. Because its electronic structure and catalytic properties are similar to those of noble metals, molybdenum carbide can be widely used as a catalyst for reactions involving hydrogen, such as alkane isomerization, unsaturated hydrocarbon hydrogenation, hydrodesulfurization, denitration, etc.;

2. Molybdenum carbide is an important part of molybdenum carbide hard coating and other cermet coatings, and can also be used alone as wear-resistant and wear-resistant coatings;

2. Molybdenum carbide is widely used in hydrogen-related reactions such as alkanes;

3. Molybdenum carbide can be used to produce chromium-free special alloys and engineering ceramics;

4. Molybdenum carbide is used as superhard tool material, wear-resistant material, heating element material, high temperature structural material;

5. Molybdenum carbide is used to produce wear-resistant films and semiconductor films;

6. Molybdenum carbide can be used to manufacture special alloys and engineering ceramics without chromium;

Molybdenum carbide Mo2C powder price

The price of molybdenum carbide Mo2C powder varies randomly with the production cost, transportation cost, international conditions, exchange rate, market supply and demand and other factors of molybdenum carbide Mo2C powder. Tanki New Materials Co.,Ltd aims to help various industries and chemical wholesalers find high-quality, low-cost nanomaterials and chemicals by providing a full range of customized services. If you are looking for Molybdenum Carbide Mo2C Powder, please feel free to contact us for the latest price of Molybdenum Carbide Mo2C Powder.

Molybdenum carbide Mo2C powder suppliers

As a global supplier of molybdenum carbide Mo2C powders, Tanki New Materials Ltd. has extensive experience in advanced engineering material properties, applications and cost-effective manufacturing. The company has successfully developed a series of powder materials (including boron carbide, aluminum carbide, titanium carbide, etc.), high-purity targets, functional ceramics, structural devices, and provides OEM services.

Molybdenum Carbide Properties
Other Namesdimolybdenum carbide, Mo2C powder
CAS No.12069-89-5
Compound FormulaMo2C
Molecular Weight203.89
AppearanceGray Powder
Melting Point2690
Boiling PointN/A
Density9.18 g/cm3
Solubility in H2ON/A
Exact MassN/A
Molybdenum Carbide Health & Safety Information
Signal WordN/A
Hazard StatementsN/A
Hazard CodesN/A
Risk CodesN/A
Safety StatementsN/A
Transport InformationN/A



Preparation method of tungsten oxide

The European Commission has submitted to member states a new draft of sanctions against Russia, including an oil embargo. Some member states that rely heavily on Russian energy sought exemptions.  

Western media reported that the European Commission draft of the sixth round of sanctions against Russia includes within six to eight months gradually banning oil imports from Russia, but allowing Hungary and Slovakia to extend the transition period for several months; The Russian Savings bank and other large financial institutions on the sanctions list.  

The European Union has imported 44 billion euros of fossil fuels from Russia since Russia launched its special military operation against Ukraine in late February, according to Finland's Energy and Clean Air Research Center.  

The Institute for European and Global Economics in Brussels estimates that the European Union currently consumes about $450 million worth of Russian oil a day.  

Among EU members, landlocked Hungary and Slovakia, which import most of their oil from Russia, cannot quickly find alternative supplies.  Slovakia says the transition will take years.  Some officials believe Bulgaria and the Czech Republic may also seek to opt out of oil sanctions against Russia.

Affected by the ever-changing international situation, the supply and prices of international bulk tungsten oxide, tungsten oxide overview, tungsten oxide application, tungsten oxide supplier, tungsten oxide price are still very uncertain.

Tungsten oxide overview

Tungsten trioxide is a powder metallurgy raw material for the production of cemented carbide and tungsten products. According to the national standard (GB/T 3457-1998), it is divided into two types, namely tungsten trioxide (referred to as yellow tungsten), molecular formula is WO3, and blue tungsten oxide (referred to as blue tungsten, is a mixed tungsten oxide), molecular formula W20O58. Yellow tungsten is light yellow crystalline powder, blue tungsten is dark blue or blue-black crystalline powder.

Preparation method of tungsten oxide

1. Ammonium tungstate method: The tungsten concentrate is hydrolyzed by sodium hydroxide, neutralized with hydrochloric acid, and then reacted with ammonium chloride to generate ammonium tungstate, which is then added with hydrochloric acid for acid hydrolysis to generate tungstic acid, which is then decomposed by roasting. , pulverized to obtain tungsten trioxide.

2. Hydrochloric acid decomposition method of tungstate. The saturated aqueous solution of sodium tungstate Na2WO4, calcium tungstate CaWO4 and other tungstate salts is heated, and the solution is slowly added dropwise into 2-3 times excess boiling concentrated hydrochloric acid by molar ratio. According to the above reaction, yellow tungstic acid is precipitated. At this time, if the dripping speed is too fast or the liquid temperature drops, suspension or colloidal precipitation is likely to be formed, which brings difficulties to the next treatment. After the dropwise addition, heating was continued on a water bath for 1 h, and the precipitate became easy to filter. After standing, it was washed several times with 5% ammonium nitrate aqueous solution to completely remove Cl-. After filtration, it is dried at 120 °C, and finally heated to 600 °C, the tungstic acid is completely dehydrated and becomes tungsten trioxide.

3. Thermal decomposition of ammonium paratungstate. Put ammonium paratungstate (NH4) 10W12O41·11H2O purified by recrystallization method into a porcelain crucible, and when heated to above about 400 ℃, ammonia volatilizes to obtain tungsten trioxide.

{xunruicms_img_title}

Application of tungsten oxide WO3 powder

Tungsten oxide has a variety of uses in daily life. It is commonly used in the manufacture of phosphors for industrial X-ray screens and tungstates for fire-resistant fabrics. Due to its rich yellow element, tungsten oxide is also used as a pigment in ceramics and paints. In addition, other application examples of tungsten trioxide are as follows:

Tungsten oxide is mainly used in the production of tungsten powder and tungsten carbide powder by calcination reduction, and is further used in the production of cemented carbide products, such as the manufacture of tools and molds.

Tungsten oxide can also be used to manufacture pure tungsten products, tungsten rods, tungsten wires, tungsten electrodes; and use counterweights and radiation shielding materials.

In industrial production, a small amount is also used as a colorant for yellow ceramics. In the shipbuilding industry, tungsten oxide is used as an important anti-corrosion paint and coating material.

Tungsten oxide has been used to produce electrochromic windows, smart windows. These windows are electrically switchable glass that varies in light transmittance and applied voltage. This allows users to tint their windows by changing the heat or light.

Tungsten oxide WO3 powder price

The price of tungsten trioxide powder will change randomly with the production cost of tungsten trioxide powder, transportation cost, international situation, exchange rate, market supply and demand and other factors. Tanki New Materials Co.,Ltd aims to help various industries and chemical wholesalers find high-quality, inexpensive nanomaterials and chemicals by providing turnkey custom manufacturing services. If you are looking for tungsten oxide WO3 powder, please feel free to send an inquiry to get the latest price of tungsten oxide WO3 powder.

Tungsten Oxide WO3 Powder Supplier

As a global tungsten oxide WO3 powder supplier, Tanki New Materials Co., Ltd. has extensive experience in the performance, application and cost-effective manufacturing of advanced and engineered materials. The company has successfully developed a series of powder materials (including oxides, carbides, nitrides, single metals, etc.), high-purity targets, functional ceramics, structural devices, and can provide OEM services.

More information about Tungsten Oxide WO3 Powder

Tungsten Trioxide Properties (Theoretical)

Compound Formula

WO3

Molecular Weight

231.85

Appearance

Yellow Powder

Melting Point

1473 °C (2683 °F)

Boiling Point

1700 °C ( 3092 °F)

Density

7.16 g/cm3

Solubility in H2O

Insoluble

Crystal Phase / Structure

Monoclinic

Exact Mass

231.936 g/mol

Monoisotopic Mass

231.935644 Da

Charge

-6


Russia's Rokot-M carrier rocket is scheduled to launch for the first time in 2024. 

The first launch of the Rokot-M carrier rocket is planned for 2024 from the Plesetsk cosmodrome, the general manager of the Khrunichev National Space Research and Production Center told TASS. The Rokot-M, a lightweight carrier rocket powered by liquid fuel, began development in 2018, with The Russian side using domestic components instead of Ukrainian components.

Luoyang Tongrun Nano Technology Co. Ltd. (TRUNNANO) is a trusted global chemical material supplier & manufacturer with over 12-year-experience in providing super high-quality chemicals and Nanomaterials including graphite powder, 3D printing powder, the tungsten oxide, tungsten oxide overview, tungsten oxide application, tungsten oxide supplier, tungsten oxide price, etc. If you are looking for high-quality materials, please feel free to contact us and send an inquiry.

Basic information of molybdenum disulfide

Recently, the Russian President hosted a meeting with oil and gas industry representatives.  He said that the refusal of some Western countries to cooperate normally with Russia and deny some Russian energy resources has hit millions of European people deeply and caused an energy crisis. These "unfriendly countries" are experiencing severe inflation, and Russia is also facing the three major challenges of increasing domestic consumption of energy Molybdenum Disulfide, Molybdenum Disulfide Overview, Molybdenum Disulfide Application, Molybdenum Disulfide Suppliers, Molybdenum Disulfide Price are still very uncertain.

Overview of molybdenum disulfide

Molybdenum disulfide is an inorganic substance, the chemical formula MoS2, is the main component of molybdenite. Black solid powder with metallic luster, molybdenum disulfide is an inorganic substance, chemical formula MoS2, is the main component of molybdenum ore. Black solid powder with metallic luster and smooth feel.

Basic information of molybdenum disulfide

English name: Molybdenum

Disulfide CAS No.: 1317-33-5

Molybdenum Disulfide Molecular formula: MoS2

Molybdenum disulfide molar mass: 160.06

Molybdenum disulfide Appearance: black/lead gray solid

Molybdenum disulfide density (water) = 1): 4.8

Molybdenum disulfide melting point (℃): 1185

Solubility of molybdenum disulfide: decomposed in aqua regia, hot sulfuric acid and nitric acid, insoluble in dilute acid and water

Molybdenum Disulfide Hazardous Properties: The powder will burn at high temperatures and react violently with peroxides.

{xunruicms_img_title}

How is molybdenum disulfide MoS2 powder produced?

MoS2 occurs naturally in molybdenite (a crystalline mineral) or pyroxene (a rare low-temperature form of molybdenite). Molybdenite obtains relatively pure MoS2 by flotation. The main pollutant is carbon. MoS2 can also be produced by thermal treatment of almost all molybdenum compounds with hydrogen sulfide or elemental sulfur, and by metathesis of molybdenum pentachloride.

Application of molybdenum disulfide

Molybdenum disulfide is an important solid lubricant, especially suitable for high temperature and high pressure. It is also diamagnetic and can be used as linear photoconductors and semiconductors showing P-type or N-type conductivity, with rectification and energy conversion. Molybdenum disulfide can also be used as a catalyst for complex hydrocarbon dehydrogenation.

It is also known as the "King of Advanced Solid Lubricants". Molybdenum disulfide is a solid powder made of natural molybdenum concentrate after chemical purification and changing the molecular structure. This product is black, slightly silver-gray, with metallic luster, smooth to the touch, and insoluble in water. This product has the advantages of good dispersibility. Not sticky. It can be added to various greases to form a non-stick colloidal state, which can increase the lubricity and extreme pressure of the grease. It is also suitable for high temperature, high pressure, high speed and the main function of molybdenum disulfide used in friction materials is to reduce friction at low temperature, increase friction at high temperature, and small loss on ignition. Volatile in friction materials.

Friction reduction: The particle size of molybdenum disulfide processed by supersonic jet pulverization is 325-2500 mesh, the particle hardness is 1-1.5, and the friction coefficient is 0.05-0.1, which can reduce friction when used as friction material;

Increase friction: Molybdenum disulfide is non-conductive, and there are copolymers of molybdenum disulfide, molybdenum trisulfide and molybdenum trioxide. When the temperature of the friction material increases sharply due to friction, the molybdenum trioxide particles in the copolymer expand with the increase of temperature and increase the friction force;

Antioxidant: Molybdenum disulfide is obtained through chemical purification and comprehensive reaction. Its pH value is 7-8, and it is slightly alkaline. It covers the surface of the friction material, protects other materials, prevents them from being oxidized, especially makes other materials not easy to fall off and enhances adhesion.

Molybdenum disulfide price

The price of molybdenum disulfide varies randomly with factors such as production costs, transportation costs, international conditions, exchange rates, and supply and demand in the molybdenum disulfide market. Tanki New Materials Co.,Ltd aims to help various industries and chemical wholesalers find high-quality, low-cost nanomaterials and chemicals by providing a full range of customized services. If you are looking for molybdenum disulfide material, please feel free to contact for the latest price of molybdenum disulfide.

Molybdenum disulfide suppliers

As a global molybdenum disulfide supplier, Tanki New Materials Ltd. has extensive experience in the performance, application and cost-effective manufacturing of advanced engineering materials. The company has successfully developed a series of powder materials (zinc sulfide, tungsten sulfide, bismuth sulfide, etc.), high-purity targets, functional ceramics and structural devices, and provides OEM services.

Parameters of molybdenum disulfide MoS2 powder:
MoS2MoO3InsolublesFeSiO2H2OOilAcid Value
99%0.05%0.26%0.14%0.05%0.08%0.10%0.54


For Germany, the largest economy in Europe, the impact of the Russian-Ukrainian conflict on the natural gas market is the most obvious. This also exposed the serious dependence of some German industrial enterprises on Russian natural gas. Some analysts pointed out that the instability of natural gas supply has had a big impact on the German economy and threatened its market competitiveness because alternative energy supplies will not be cheap and difficult to come quickly. Increased uncertainty over natural gas supplies is putting enormous pressure on German manufacturers in sectors ranging from steelmaking to chemical Molybdenum Disulfide, Molybdenum Disulfide Overview, Molybdenum Disulfide Application, Molybdenum Disulfide Suppliers, Molybdenum Disulfide Price for the time being, but the market demand for Molybdenum Disulfide, Molybdenum Disulfide Overview, Molybdenum Disulfide Application, Molybdenum Disulfide Suppliers, Molybdenum Disulfide Price in the future will also change with the influence of various external factors. If you need Molybdenum Disulfide, Molybdenum Disulfide Overview, Molybdenum Disulfide Application, Molybdenum Disulfide Suppliers, Molybdenum Disulfide Price, please feel free to contact us.

What is a polycarboxylate superplasticizer

In 2023, the China Greater Bay Area Concrete Industry High-Quality Development Seminar and the Expo on Concrete Equipment and Technology will take place at the Guangzhou Canton Fair Complex. Guangzhou Canton Fair Complex. The conference's theme will be "Gathering Talents and Gathering Power, Talking about Smart Concrete," co-sponsored by the Guangzhou Concrete Industry Association and Guangdong Hongwei International Exhibition, responsible persons from the Guangzhou Municipal Bureau of Housing and Urban-rural Development, Municipal Bulk Cement and Building Energy Conservation Management Center as well as Concrete Industry Experts as well as representatives from downstream and upstream companies participated at the show.


A concrete core sample 200 millimeters in diameter and an overall long 25.3 meters was successfully removed from the RCC gravity dam in the Fengshan Reservoir Project in Qiannan Buyi and Miao Autonomous Prefecture, Guizhou Province, China. The length of the core sample is the longest among water conservancy projects within Guizhou Province, marking that the quality of construction and technology of the dam in the Fengshan Reservoir Project has reached the top standard.

The concrete pouring for the first warehouse at the Qishi Junction of the Pinglu Canal in China has started, which signifies that the three main points of operation for the Pinglu Canal have entered a new phase of building the main structure. This Pinglu Canal is the backbone of the land-sea channel that runs through the west. When it is finished and open to navigators, the canal will let the world's narrowest, most cost-effective, and most efficient ocean channel between Guangxi and Southwest China.


1. What is a polycarboxylate superplasticizer?

Polycarboxylate superplasticizer is used primarily in cement concrete to act as a dispersant. It is composed of polymers containing sulfonic acid group (-SO3H) and carboxyl groups (-COOH) or derivatives of them and features high efficacy, environmental protection, and security.

The role of a polycarboxylate superplasticizer is primarily to disperse cement particles more evenly by adhering to concrete particles' surfaces, decreasing the amount of water needed, and increasing the strength and flexibility of concrete in the process. Compared to traditional water-based water-reducing agents, polycarboxylate agents have a higher water reduction rate and workability that can significantly enhance the performance and strength of concrete.


2. Superplasticizers that are applied to polycarboxylate.

Polycarboxylate Superplasticizer is commonly employed in cement concrete as a dispersant. Apart from its use in bridges, highways, tunnels, dams, high-rise buildings, and various other engineering areas, it is extensively utilized for grouting, pouring material such as anchoring, plugging the waterproof mortar K11 cement self-leveling, prefabricated components, special mortars, and various other construction materials. The applications of polycarboxylate superplasticizers in these areas will be described below.


1. Highway Engineering

In highway engineering, superplasticizers made of polycarboxylate are used to make high-performance highway concrete, which can increase durability and wear endurance on the surface of roads. The superplasticizer polycarboxylate's water-reducing capacity can significantly reduce water consumption in concrete, increase concrete's strength and flexibility, and make the road surface more dense, smoother, other, smoother, and more robust. The use of polycarboxylate superplasticizers in highway engineering will fulfill the highway construction's safety, green, and durability demands.



2. Bridge Engineering

When it comes to bridge design, superplasticizers made of polycarboxylate can be used to create bridge concrete with great strength and fluidity to increase bridges' bearing capacity and service life. The high water-reducing capacity and high workability of the polycarboxylate superplasticizers can significantly enhance Bridge concrete's performance, increase the uniformity and compactness of concrete, lessen the formation of bridge cracks, and consequently increase the longevity and safety of bridges.


3. Dam Project

When it comes to dam design, superplasticizers made of polycarboxylate are used to make high-strength, high-impermeability dam cement to increase the stability and security of the dam. Dams are an essential structure that stores water resources and manages water flow. It also has demanding requirements for the stability and safety that the dam. Utilizing polycarboxylate superplasticizers will increase the resistance and impermeability of concrete dams and effectively stop cracks and leakage, improving the dam's stability and security.

4. Tunnel Engineering

Tunnel engineering is a field where superplasticizers of polycarboxylate are used to make high-strength and high-impermeability tunnel concrete to increase the durability and stability of the tunnel. Tunnels are crucial underground structures used for transport and transport, so the requirements for durability and stability of tunnels are demanding. Using superplasticizers made from polycarboxylate will increase the durability and strength of tunnel concrete. It can effectively stop cracks and leaks, improving the tunnel's durability and stability.


5. High-rise buildings

In high-rise structures, Polycarboxylate superplasticizers are employed to make high-strength, highly-fluidity concrete for high-rise buildings to improve the safety and stability of structures. Because of the number of floors and the high building heights, their requirements for the strength of the structure and seismic performance of buildings are extremely significant. Utilizing polycarboxylate superplasticizers will enhance the strength and flexibility of high-rise concrete. It can significantly improve the strength of structures and the earthquake performance of structures, increasing the stability and security of structures.


6. Material pouring, grouting anchoring, plugging, and many more fields.

Apart from its use in engineering fields like dams, bridges, road tunnels, and high-rise structures, polycarboxylate superplasticizers are extensively used in construction materials, such as grouting agents and pouring materials, as well as anchoring and plugging. In these areas, the function of superplasticizers made from polycarboxylate is mostly by adsorption on the surfaces of cement particles, ensuring that the cement particles become more evenly distributed, thus reducing the quantity of water needed while at the same time improving the quality and consistency in the materials. These applications can fulfill various specific maintenance and construction requirements.


How do you make polycarboxylate superplasticizers?

Polycarboxylate superplasticizer is extensively utilized in cement concrete to act as a dispersant. The process of making it can be broken down into the steps below:


synthetic macromonomer

It is first necessary to create macromonomers. This is one of the primary processes in producing superplasticizers from polycarboxylate. The macromonomer is the primary component of the superplasticizer polycarboxylate that has polymer chains and polar company and can be adsorbed on the surfaces of cement particles to be superplasticizers. The most popular method used is free radicals' polymerization; the primary raw materials include unsaturated acids, such as methacrylic acid, acrylic acid, and maleic acid, and polymers like polypropylene glycol and polyethylene glycol. In the process of synthesis, it is crucial to regulate the temperature of the reaction and time, as well as the proportion of ingredients and other variables, to ensure the yield and quality of the macromonomer.


Polymerization

Once the macromonomer has been synthesized, a polymerization reaction is necessary. The polymerization reaction will react to the macromonomer using an oxidizing agent, such as ammonium persulfate, to create one with a higher level of polymerization. When performing this procedure, it is important to be aware of variables like reaction temperature and the time and quantity of oxidant used to ensure the polymerization process's efficiency as well as the quality of the product.


Post-processing

After the polymerization reaction is complete, post-treatment is needed. The post-treatment process involves dissolving the water and polymer to the ratio specified, adding acidic compounds for neutralization, adjusting the pH that the solution has, and then the addition of a protective colloid as well as other components to produce the final superplasticizer made of polycarboxylate. It is essential to regulate the amount of solution, the pH value, the kind and amount of protective colloid, and other variables to guarantee the quality and effectiveness of the solution.


4. Market prospects analysis of superplasticizer polycarboxylate

Due to the rapid growth in the field of construction, demand for polycarboxylate superplasticizers is growing, and the opportunities are vast. This article will examine the potential market for superplasticizers made from polycarboxylate based on the demand for market products, the policy environment, technological advancement, competition patterns, and the latest trends.

 

1. Market demand

As urbanization is accelerating and the continued development in infrastructure development, the demand for cement concrete has been growing each year, driving the demand for superplasticizers made of polycarboxylate. Polycarboxylate superplasticizer offers the benefits of an excellent water-reducing capacity, a high working capacity, a lower shrinkage rate, and so on. It can also significantly enhance the performance and durability of concrete. This is why it is extensively used in engineering areas such as bridges, roads, dams, tunnels, and high-rise structures. A lot of people use it. As the years progress, due to the constant advancement in infrastructure construction and the constant improvement in the quality of buildings, the need for polycarboxylate superplasticizers will continue to increase.


2. Policy environment

After the pandemic struck the world, various policies for improving the construction industry have been introduced, and across the globe are now recognizing the importance of infrastructure to spur economic development. One of them is the Chinese "Outline for the Modernization of the Construction Industry," which recommended that by 2030, the size of the construction industry would reach the target of around 20% of the nation's GDP. In the meantime, China's standards for environmental protection and conservation of energy are getting strict, and this provides an incentive for policymakers to develop superplasticizers that are made of polycarboxylate. Similar policies have been enacted across China to encourage and facilitate the manufacturing and utilization of polycarboxylate superplasticizers. Also boosting demand for superplasticizers made of polycarboxylate.


3. Development of technology

With the constant advancement of new technology and science, polycarboxylate superplasticizers' manufacturing technology and performance are constantly upgraded. Today, superplasticizers made by polycarboxylate manufacturers from around the globe are continuously pursuing technological research, development, and development and have introduced an array of brand new superplasticizers made of polycarboxylate including high water-reducing models and high slump retention varieties and those with low shrinkage. Wait. Introducing these products will further expand the scope of polycarboxylate superplasticizers' applications and market spaces.


4. Competitive landscape

The polycarboxylate superplasticizer market has developed into a remarkably competitive pattern of fierce competition. Certain well-known and well-known foreign construction materials firms are using the market for polycarboxylate superplasticizers and launching various items and products. However, smaller companies are also gaining entry into the market, and competition is growing increasingly fierce. In today's competitive market, businesses must continue to increase their service and product quality levels and cut production costs to gain market share.


5. Trends

Shortly, due to the constant growth within the industry of building the market for superplasticizers made from polycarboxylate will be able to present these trends.

High performance In developing engineering requirements, the performance of polycarboxylate superplasticizers has to be continually improved to meet the needs of high-performance concrete.

Protection of the environment: As environmental protection requirements and energy efficiency are becoming increasingly demanding, polycarboxylate superplasticizers must be more eco-friendly and energy-efficient.

Customization Diverse concrete fields and industries require different kinds of superplasticizers made of polycarboxylate to ensure that consumers will accept personalized polycarboxylate products.

Intelligent: With the advancement of technologies for information and intelligence, the next polycarboxylate superplasticizer will be more sophisticated and capable of achieving automatic production and intelligent use.

In the end, the potential for market share growth for superplasticizers made of polycarboxylate is huge. However, it is necessary for businesses to constantly improve the quality of their services and products to satisfy the changing demands of the market and to adapt to changes. In the meantime, continuous technological research, as well as innovation and advancement, are vital to meet the market's needs and predict future growth trends.

What is Molybdenum disulfide MoS2 powder

Description of Molybdenum diulfide

Molybdenum sulfide (also known as MoS2) is a transition metal sulfide. It is dark grey, or black, solid. The layers of the crystal structure are made up of alternate arrangements of sulfur and Molybdenum. Molybdenum disulfide This material is a good choice for its chemical and thermal resistance. It can be easily reacted to acids or bases. It is widely used in lubricants as well as additives and composite material. As an excellent oil, molybdenum diulfide offers a high load bearing capacity, low friction coefficient and good friction resistance. This is why it's widely used by the machinery, petrochemicals and automobile industries. Molybdenum diulfide, when used in harsh environments such as those with high temperatures, loads, or speeds, can act as a lubricant, reduce friction, and prolong the life expectancy of the equipment. The molybdenum diulfide used as an additive to fuel can be effective in improving the combustion efficiency, and reducing pollutant emission. This additive plays a major role in protecting the environment, as it reduces air pollutants and improves energy efficiency.

Use of Molybdenum diulfide

Molybdenum diulfide is a compound that has outstanding chemical and physical properties. It is widely used in a wide range of areas. It has excellent chemical and mechanical properties. Following are some of the most important applications for molybdenum sulfide.

Lubricants - Molybdenum Disulfide, a lubricant that is excellent for its high load carrying capacity, low friction coefficient, and good resistance to friction. It has a high lubrication capacity in high-temperature, high-load and high-speed environments. This is why it's widely used in the machinery industry, automobile manufacturing, and petrochemical industries. Molybdenum Disulfide Lubricant is also used to produce lubricating grease, lubricating film and lubricating oil.

Additive - Molybdenum Disulfide, when used as a fuel additive, can increase the efficiency of combustion and reduce emissions. This additive plays a major role in protecting the environment by reducing air pollution and improving energy efficiency. As an additive, molybdenum can be added to rubber, plastics or coatings in order to improve their properties.

Composite materials. Molybdenum Disulfide can also be mixed with rubber, resins, and other materials in order to produce high-performance materials such as composite fibres, reinforced plastics etc. These composites offer excellent mechanical properties, corrosion resistance and can be used in many industries including automotive, electronics and aerospace.

Electronic industry Molybdenum disulfide It can be used for the electronic vapour deposition of thin MoS2 films. These thin films have excellent electrical conductivity, and transmit light well. This thin film material is suitable for optoelectronics applications, including solar cells and displays. The molybdenum-disulfide material can also be used to create transistors, Field-Effect Transistors and other electronic components. These electronic components have excellent semiconductor performance and good electronic mobility.

Production Methods of Molybdenum Diulfide

Molybdenum diulfide, a compound with excellent chemical and physical properties, is used in numerous fields. The production process can be done in many ways, including double decompositions, synthesises, flotation or electroplating. Synthesis is the most commonly used method for producing molybdenum.

The synthesis is a way to make nano MoS2 using a molybdenum, tungsten source. This method can produce sulfides of high purity with fewer impurities. This method can prepare sulfides to meet various functional requirements. The steps in the synthesis include preparation of raw materials, chemical reactions, product separation, and purification.

It is essential to prepare both a tungsten source or molybdenum, and a sulfur-based source during the raw material preparation phase. Tungsten, molybdenum or metal powders are the most common sources. While sulfur can be either elemental sulfur or sulfide. The purity, chemical properties, reaction conditions and other factors must be taken into consideration when selecting tungsten and molybdenum or sulfur sources.

In the chemical reactions stage, tungsten is Molybdenum Sources The molybdenum is disulfide produced in biochemical reactions that occur at high temperatures. The reaction temperature, the reaction time, and the reaction atmosphere are all part of the specific conditions. The temperature and reaction time of the reaction have an important effect on particle size and product purity. Reaction atmosphere has a similar impact.

In the separation and purification phase, molybdenum must be separated from the reaction products. Separation and purification techniques are required. Precipitation, filtration and distillation are some of the most common separation and purification processes. These methods can be used to separate the molybdenum diulfide from impurities and obtain molybdenum products with high purity.

Other methods are available to produce molybdenum sulfide. These include the double decomposition technique, the flotation method, and the electroplating method.

The compound decomposition technique produces molybdenum by reacting ammonium motate or ammonium tantate with ammoniumsulfide. The method is able to produce molybdenum sulfide even at lower temperatures. It can also prepare different molybdenum sulfide products, such as those with different particle sizes and morphologies.

The method of flotation involves the use of organic agents to grind tungsten, molybdenum or other sources into a mixture with minerals like pyrite and sphalerite. This method is able to produce molybdenum products with high purity, but requires more organic chemicals and a more complicated production process.

Electroplating is the process of electroplating molybdenum on a metal surface. By using this method you can create molybdenum-disulfide films that have excellent properties. However, the chemicals and waste liquids in the electroplating will pollute the surrounding environment.

It is important to select the best production method for the job based on the demand. It is also important to consider environmental protection and safety during the production process.

Prospect Market for Molybdenum Diulfide

Molybdenum diulfide is an important chemical compound that has excellent chemical and physical characteristics. It's widely used in industries such as aerospace, electronics and machinery. Demand for molybdenum diulfide has increased due to the continued development of global economies and the rapid growth in high-tech fields. Molybdenum Disulfide Market has a wide range of prospects for the future.

Molybdenum Disulfide, as a highly-performance lubricant used in a variety of fields, including machinery manufacturing and automobile manufacturing. As industrialization continues and mechanical equipment becomes more precise and automated, the demand for lubricants will increase. Molybdenum diulfide has a high performance and is in great demand.

In the second place, molybdenum dioxide can be added to fuels as an additive that will improve combustion efficiency, reduce pollutants, and help reduce air pollutant pollution. As environmental awareness continues to grow and environmental policies are strengthened, the use of molybdenum dioxide as a green additive will continue to be promoted.

Molybdenum diulfide, when combined with other materials such as resins, fibres composites and rubber, can also be used to produce high-performance materials. These composites have excellent mechanical and corrosion-resistant properties and are widely used by the automotive, aerospace, electronic and other industries. High-performance materials are in high demand due to the rapid growth and development of the high-tech industry. Molybdenum is one component and will see its demand increase.

The molybdenum-disulfide compound can be used to create new energy sources, including solar cells, energy storage batteries, and other energy technologies. As new energy technologies continue to be developed, demand for molybdenum will increase. This will provide new momentum for the development of the market.

The price of disulfide molybdenum will also gradually decrease with the continual improvement of production and the reduction of costs. This in turn will encourage further growth of market demand. In parallel, as environmental awareness increases and technological progress continues, some new production technologies and processes will be slowly applied to the production molybdenum. This will further promote the development of the molybdenum market.

According to the report from the market research company the global molybdenum market will continue rapid growth for the next several years with an annual rate of growth of over 10%. Globally, it is estimated that the molybdenum-disulfide industry will surpass $1 billion in 2025. China is a big producer and user of molybdenum, so the market will continue to grow rapidly.

Molybdenum disulfide Powder Price :

Many factors influence the price, such as the economic activity, the sentiment of the market and the unexpected event.

You can contact us for a quotation if you want to know the current price of Molybdenum diulfide powder.

Molybdenum disulfide Powder Supplier :

Technology Co. Ltd. has been a leading global chemical supplier & manufacturer for over 12 years.

Chemicals and nanomaterials of high quality, including silicon powders, graphite particles, zinc sulfide particles, boron grains, etc.

Send us an email if you want to know more about our high-quality Molybdenum diulfide powder.

Why does properly poured concrete end up cracking

It is very easy to cause concrete cracking if the construction or maintenance are not done correctly. What are then the five main causes of cracking concrete?

1. The cement proportion problem: Some workers in construction will add more water for a more fluid concrete. However, this will result in an increase in water-cement ratio. This will cause the concrete to harden too quickly, and lead to cracking.

2. Transport and mixing issues: If mixing and transporting concrete takes too much time, the water in the concrete will evaporate quickly. concrete . This leads to a concrete that is weaker on the construction site, unable to meet construction specifications.

3. Construction speed

4. Maintenance is unreasonable. During the period of maintenance, if late watering isn't maintained, the result will be the Cracking phenomenon Later in the year, concrete will be used. Concrete is used in the future. Concrete Surface Watering You can water the concrete often to speed up the drying process. Concrete will shrink if it is not watered. Late cracking occurs when concrete strength is decreased.

5. Environmental factors: If the environment at the construction site is relatively dry and there is high temperature, wind, or both, then the concrete surface evaporation is accelerated. This results in cracks on the concrete's surface. Concrete constructions are most likely to crack in the winter or summer because of the temperature difference.

Solution: Add a crack-preventing agent. A composite anti-cracking agents made of inorganic materials can prevent foam concrete from cracking by more than 80%. Add 2 to 3 kilograms per cubic foot.

What is Boron carbide

Boron carburide is a high-performance carbon compound, which is composed primarily of boron, carbon, and other elements. The chemical formula for B4C is B4C. It is widely used by industries, the military, aerospace and other fields because of its characteristics, such as its high hardness and melting point. This article will give a detailed description of the physical properties and chemical composition, preparation techniques, performance characterization and application fields.

Physical properties

Boron carbide, a non-metallic inorganic material with a density of 2.52g/cm3, is a dense inorganic. It has a cubic lattice structure, a black lustre, and a density of 2.52g/cm3. Boron carbide exhibits a low electrical conductivity of only 10-6S/m, and has excellent insulation. Its thermal conductivity (97W/m*K) is lower than metals, silicon and ceramics but higher than glass and other materials.

Chemical properties

Boron carbide exhibits chemical stability, and it is not reactive to acids or alkalis. B4C is reactive with O2, H2O and other substances. High temperatures can generate B2O3, CO etc. B4C has anti-oxidant and corrosion resistance. This makes it suitable for long term use in environments with high temperatures and corrosion.

Preparation method

Preparation methods for boron carbide The main methods are the arc melting and chemical vapour deposit method.

Methode de réduction du carbothermal

Carbon thermal reduction (CTR) is widely used to prepare boron carbide . This method generates carbon dioxide and boron carburide by melting boric black and carbon. The reaction formula is B2O3+3C + B4C+CO. The reaction temperature ranges from 1500 to 1700°C. This method has the advantage of being simple, low-cost, and easy to use. However, the boron carbide produced is not of high purity.

Arc melting method

In the arc melting process, graphite electrodes are heated and melted in an arc with boric acid to create boron carbide. The reaction formula is B2O3 + 3C - B4C. The reaction temperature ranges between 1800 and 2000°C. The boron-carbide prepared using this method is high in purity, with fine particles. However, the process is complicated and expensive.

Chemical vapour deposition method

Chemical vapour deposition uses the reaction of gaseous carbon black and borane at high temperature to create boron carburide. The reaction formula is B2H6+6C + B4C+6H2. Reaction temperature ranges between 1000-1200°C. The boron-carbide prepared using this method is high in purity, with superfine particles. However, the process is complicated and expensive.

Performance Characterization

The performance characterisation of boron carbide The term mainly refers to physical, chemical, or mechanical properties.

Physical Property

Density, conductivity and thermal conductivity are the main physical properties of Boron carbide. Among these, the density of the boron carbide material is 2.52g/cm3, its conductivity is 10-6S/m. And the thermal conductivity, 97W/m*K.

Chemical property

Boron carbide exhibits chemical stability, and it is not reactive to acids or alkalis. B4C is reactive with H2O and O2. High temperatures can generate B2O3, CO etc. B4C has anti-oxidant and corrosion resistance. This makes it suitable for use over a long period of time in high-temperature, corrosive environments.

Mechanical property

Boron carbide's high hardness, melting point, and heat transmission make it a popular material in many industries. Hardness of 3500kg/mm2, melting point 2450, and heat transfer rate 135W/m*K are among the characteristics that make boron carbide so popular in industries, military, aerospace, and other fields.

RBOSCHCO

RBOSCHCO, a global chemical material manufacturer and supplier with more than 12 years of experience, is known for its high-quality Nanomaterials. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. RBOSCHCO, a leading manufacturer of nanotechnology products, dominates the market. Our expert team offers solutions that can help industries improve their efficiency, create value and overcome various challenges. Send an email to Sales1@rboschco.com, if you're looking for Boron Carbide.

Silicon Boride SiB6 Powder Applications

Structure of Molybdenum Carbide Mo2C

Preparation method of tungsten oxide

Basic information of molybdenum disulfide

High Purity Iron powder Fe Powder CAS 7439-89-6, 99%

High Purity Copper Powder Cu Powder CAS 7440-50-8, 99%

High Purity Tin Sn Powder CAS 7440-31-5,99%

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

High Purity Molybdenum Powder Mo Powder CAS 7439-98-7, 99.9%

High Purity Colloidal Silver Nano Silver Solution CAS 7440-22-4

Product Properties of Chromium Oxide Cr2O3 Powder CAS 1308-38-9

High Purity Boron Carbide B4C Powder CAS 12069-32-8, 99%

High Purity Silicon Si powder CAS 7440-21-3, 99%

High Purity Tungsten Carbide WC Powder Cas 12070-12-1, 99%

High Purity 3D Printing Inconel 625 Powder

Main applications of molybdenum disulfide

The main features of tin sulfide powder

Hafnium Diboride HfB2 Powder Applications

High Purity Spherical Graphite C Powder CAS 7782-42-5, 99.9%

High Purity Copper Oxide CuO powder CAS 1317-38-0, 99.9%

Newsjumbleaid is a trusted global chemical material supplier & manufacturer with over 12 years experience in providing super high quality chemicals and Nano materials such as graphite powder, boron powder , zinc sulfide , nitride powder, Calcium nitride, Ca3N2, 3D printing powder, and so on.


And our innovative, high-performance materials are widely used in all aspects of daily life, including but not limited to the automotive, electrical, electronics, information technology, petrochemical, oil, ceramics, paint, metallurgy, solar energy, and catalysis. Our main product list as following:

Metal and alloy powder: boron, nickel, silicon, copper, iron, aluminum. chrome, silver

Boride powder: magnesium boride, aluminum boride, boron nitride, boron carbide, hafnium boride;

Sulfide powder: Molybdenum sulfide, zinc sulfide, bismuth sulfide;

Oxide powder: ITO, ATO, iron oxide, titanium oxide, manganese oxide, copper oxide;about.jpg

Carbide powder: titanium carbide, manganese carbide, titanium carbonitride, hafnium carbide;

Nitride powder: Aluminum nitride, hafnium nitride, magnesium nitride, vanadium nitride;

Silicide powder: hafnium silicide, molybdenum silicide, tantalum silicide;

Hydride powder: Hafnium hydride, vanadium hydride, titanium hydride, zirconium hydride.etc.

Have any questions or needs, please feel free to contact Newsjumbleaid.